The translocation of the glucose transporter sub-types GLUT1 and GLUT4 in isolated fat cells is differently regulated by phorbol esters.
نویسندگان
چکیده
Insulin stimulates glucose transport in isolated fat cells by activation of glucose transporters in the plasma membranes and through translocation of the glucose transporter sub-types GLUT4 (insulin-regulatable) and GLUT1 (HepG2 transporter). The protein kinase C-stimulating phorbol ester phorbol 12-myristate 13-acetate (PMA) is able to mimic partially the effect of insulin on glucose transport, apparently through stimulation of carrier translocation. In order to ascertain whether protein kinase C is involved in the translocation signal to both carrier sub-types, we determined the effect of PMA on the subcellular distribution of GLUT1 and GLUT4 by immunoblotting with specific antibodies directed against these transporters. Isolated rat fat cells (4 x 10(6) cells/ml) were stimulated for 20 min with insulin (6 nM) or PMA (1 nM). 3-O-Methylglucose transport was determined and plasma membranes and low-density microsomes were prepared for Western blotting. 3-O-Methylglucose transport was stimulated 8-9-fold by insulin, and 3-4-fold by PMA (basal, 5.6 +/- 2.3%; insulin, 43.6 +/- 7.3%; PMA, 18.4 +/- 4.9%, n = 9). PMA was able to increase the amount of GLUT4 in the plasma membrane fraction by 2.5(+/- 0.9)-fold (n = 6) whereas insulin stimulation was 4.4(+/- 1.7)-fold (n = 6), paralleled by a corresponding decrease of transport in the low-density microsomes (insulin, 50 +/- 5% of basal; PMA, 63 +/- 11% of basal, n = 6). Although PMA regulates the translocation of GLUT4, it has no effect on GLUT1 in the same cell fractions (increase in plasma membranes: insulin, 1.7 +/- 0.5-fold; PMA, 0.91 +/- 0.1-fold, n = 4; decrease in low-density microsomes: insulin, 53 +/- 11% of basal; PMA, 101 +/- 5% of basal, n = 4). These data are in favour of a role for protein kinase C in signal transduction to GLUT4 but not to GLUT1 in fat cells.
منابع مشابه
Cell surface labeling of glucose transporter isoform GLUT4 by bis-mannose photolabel. Correlation with stimulation of glucose transport in rat adipose cells by insulin and phorbol ester.
A new impermeant photoaffinity label has been used for identifying cell surface glucose transporters in isolated rat adipose cells. This compound is 2-N-4(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4- yloxy)-2- propylamine. We have used this reagent in combination with immunoprecipitation by specific antibodies against the GLUT4 and GLUT1 glucose transporter isoforms to estimate the re...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملAdditive effects of hyperinsulinemia and ischemia on myocardial GLUT1 and GLUT4 translocation in vivo.
BACKGROUND Myocardial ischemia increases glucose uptake through the translocation of GLUT1 and GLUT4 from an intracellular compartment to the sarcolemma. The present study was performed to determine whether hyperinsulinemia causes translocation of myocardial GLUT1 as well as GLUT4 in vivo and whether there are additive effects of insulin and ischemia on GLUT1 and GLUT4 translocation. METHODS AD...
متن کاملSeparation of insulin signaling into distinct GLUT4 translocation and activation steps.
GLUT4 (glucose transporter 4) plays a pivotal role in insulin-induced glucose uptake to maintain normal blood glucose levels. Here, we report that a cell-permeable phosphoinositide-binding peptide induced GLUT4 translocation to the plasma membrane without inhibiting IRAP (insulin-responsive aminopeptidase) endocytosis. However, unlike insulin treatment, the peptide treatment did not increase gl...
متن کاملDistinct Akt phosphorylation states are required for insulin regulated Glut4 and Glut1-mediated glucose uptake
Insulin, downstream of Akt activation, promotes glucose uptake into fat and muscle cells to lower postprandial blood glucose, an enforced change in cellular metabolism to maintain glucose homeostasis. This effect is mediated by the Glut4 glucose transporter. Growth factors also enhance glucose uptake to fuel an anabolic metabolism required for tissue growth and repair. This activity is predomin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 275 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1991